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Abstract
Although the definitions of formal models used to represent spatial relations have gained increasing attention over the past
30 years, the linkage between topology and distance has not yet been effectively established. A topological relation model called
the distance-based topological relation model (D-TRM) that considers both the topology and distance of spatial regions is
proposed. The D-TRM is divided into two subtypes: the actual DTRM (AD-TRM) and the signed DTRM (SD-TRM). The
actual distance is based on the distance in a two-dimensional space. The signed distance is based on the sign of the actual distance.
Eight topological relations, namely, disjoint, meet, overlap, cover, contain, equal, coveredBy and inside, represented by the AD-
TRM and SD-TRM are shown. The mutual exclusiveness among these eight topological relations represented by the SD-TRM is
proven. The topological relation representations from the 9-intersection model (9IM), the splitting measures of the 9IM (SP-
9IM), the SD-TRM and the AD-TRM are discussed, and the interoperability of each of the above models is summarised. The
topological relation representation between the AD-TRM and the comprehensive set of 11 metric refinements is compared. The
results show the following: (1) as the generalisation of the AD-TRM, the SD-TRM can concisely represent the topological
relations; (2) the topology and distance between two spatial regions can be represented by the AD-TRM in a unified framework;
(3) the AD-TRM provides a greater level of detail than the 9IM and (4) the D-TRM can express more distance information than
the comprehensive set of 11 metric refinements.

Keywords Topological relation .Metric refinements . Distance-based topological relationmodel (D-TRM) . Spatial region

Introduction

Spatial relations are the relations between objects involving
their relative position (Freemana 1975). Spatial relations are
widely used to support the design of suitable query languages
for spatial data retrieval and analysis in spatial databases and
geographical information systems (GIS) (Schneider and Behr
2006). Spatial relation is commonly grouped into topological
relations, direction relations and metric relations (Worboys
1992; Sharma 1996). Topological relations are invariant under
topological transformations, such as translation, scaling and
rotation (Egenhofer 1989). The integration of topological re-
lation and other spatial relations is the current research focus
(Bruns and Egenhofer 1998; Dong 2005; Nedas and
Egenhofer 2008; Kor and Bennett 2013; Dube 2017).
Topology is considered to be first-class information, whereas
metric properties, are used as refinements that are frequently
less exactly captured (Egenhofer and Mark 1995). Metric
properties focus on the distance, length, perimeter and so on
(Worboys 1992). Topological and metric are not totally sepa-
rate concepts (Egenhofer and Dube 2009). Topological rela-
tion models that take metric properties into account can
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provide more details than pure topological relation models
alone. Distance property, which is an important aspect of met-
ric properties, can be used to quantitatively represent the de-
gree of the proximity between spatial objects. An important
present-day research trend is the integration of topological
representations with those of distance.

Over the past three decades, many efforts have been made
to formally define topological relations, for example, interval-
based temporal logic, region connection calculus (RCC) and
point-set topology. Interval-based temporal logic is suitable
for expressing topological relations in a one-dimensional
space. For example, interval-based temporal logic has been
proposed to express the topological relations of temporal in-
tervals (Allen 1983; Hornsby et al. 1999; Egenhofer 2007).
The core of the RCC approach is to consider whether there is a
connection between spatial objects. The RCC approach has
beenwidely utilised for qualitative topological representations
and for reasoning between regions (Randell and Cohn 1989;
Randell et al. 1992; Cohn et al. 1995, 1997; Gotts et al. 1996;
Jonsson and Drakengren 1997; Stell and Worboys 1997; Li
and Li 2006). The RCC-5 and RCC-8 schemes consist of five
and eight basic topological relations, respectively. Meanwhile,
the core of the point-set topological relation model is to con-
sider whether the intersections between the subsets of spatial
objects are empty. Research has been conducted on the
formalisation of topological relations based on the point-
set topology relation model (Egenhofer and Franzosa
1991, 1995; Egenhofer and Herring 1991; Egenhofer
et al. 1993, 1994; Clementini et al. 1993; Open GIS
Consortium 1999; Chen et al. 2001; Deng et al. 2007;
Liu and Shi 2007; Kurata 2009; Alboody et al. 2010;
Leng et al. 2017; Shen et al. 2017; Formica et al. 2017).
The 9-intersection model (9IM) is a well-known compre-
hensive model for topological spatial relations based on
point-set topology and 512 binary topological relations
can be distinguished accordingly. The RCC-8 and 9IM
topological relation models can effectively represent topo-
logical relations, whereas the lack of metric properties in
these two models will seriously affect the level of detail
regarding the representation of topological relations. The
following two examples motivate the interest in the inte-
gration of topological relation and metric properties. First,
California and Colorado are disjoint, and California and
Maine are disjoint. Although equipped with the same topo-
logical relation, the distance from California to Colorado is
less than the distance from California to Maine. Second, al-
though an island is always inside a lake in the whole year, the
distance from the island to the boundary of the lake may
changes in different seasons. If only topological relation is
considered, differences in distance will not be distinguished.

Metric refinements have been applied to enhance topolog-
ical relations. Topological relation models that incorporate
metric properties can provide a greater level of detail than a

purely topological relation model alone. Thus, various ap-
proaches that consider metric refinements of topological rela-
tions have been widely investigated (Egenhofer and Shariff
1998; Shariff et al. 1998; Godoy and Rodríguez 2002;
Nedas et al. 2007; Egenhofer and Dube 2009; Sridhar et al.
2011; Dube et al. 2015; Penna et al. 2017). Metric properties,
such as splitting ratios, closeness measures, expansion close-
ness, contraction closeness and approximate alongness, are
discussed in the above literatures. Compared with those of
topological relation models, metric refinements of topological
relations can describe both topological relations and metric
relations. Although many other metric properties have been
integrated into topological relation models, the linkage be-
tween topology and distance has not been established effec-
tively. Due to the absence of distance information in these
models, the movement of the spatial object cannot be
expressed by these topological relation models. For example,
a small translation of one object usually does not modify the
topological relations between two spatial objects; however,
the distance between spatial objects has changed. The absence
of distance information has seriously affected the accuracy of
spatial relations.

Let us move on to the distance that is an important aspect of
spatial relations, and many distance models have been pro-
posed independently of topological relation models or order
relation models. The distance properties in some models are
continuous. For example, a fuzzy membership function,
which denotes the degree of membership (between zero and
one, inclusive), was constructed (Dutta 1989). The distance
properties in many other models are discrete. For example, a
method to rank distances into a number of intermediate steps
from 0 to n − 1 was proposed (Frank 1992). In addition, a
model with the characteristic advantage of flexible sets of
distance distinctions at various levels of granularity for the
qualitative representation of distances in the context of a geo-
graphic space was developed (Hernández et al. 1995), fuzzy
sets were used to describe the closeness between various ob-
jects (Guesgen 2002), distance relations within a particular
environmental space were discussed (Worboys 2001) and
the qualitative spatial relation nearness (Duckham and
Worboys 2001) was explored. Following these ideas, many
research studies have considered both continuous and discrete
approaches for the representation of distance metrics. For ex-
ample, one model was developed to consider both absolute
and relative methods for judging distances (Gahegan 1995)
and another was presented to determine the qualitative dis-
tance between two features through a network (Schultz et al.
2007). Accordingly, qualitative and quantitative models are
widely used to represent spatial distance relations.

Following the precondition that Btopology matters, metric
refines^ (Egenhofer and Mark 1995), this paper presents a
distance-based topological relation model (D-TRM). Unlike
models based on RCC or point-set topology, connections or
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intersections are not considered and distance is taken into
account in the D-TRM. The advantage of the D-TRM lies in
two aspects: (1) the D-TRM is concisely developed to consid-
er only four elements and (2) both topological relations and
distances between spatial regions can be expressed in a unified
framework. The queries, such as BWhether the topological
relation between California and Colorado are equal to the
topological relation between California and Maine or not?
Whether the distance from California to Colorado is nearer
than the distance from California to Maine or not?^ and
BWhat is the distance and topological relation of the island
and the lake?^ will be easily addressed by the D-TRM.

The remainder of this paper is outlined as follows.
Section BThe distance-based topological relation model^ intro-
duces the proposed topological relation model for spatial re-
gions. Section BResults^ describes the eight topological rela-
tions represented by the proposed model and the mutual exclu-
sion of the eight topological relations. Section BDiscussion^
discusses and compares the proposed model with other models.
Section BConclusions^ provides the conclusions of this study
and discusses future work.

The distance-based topological relation
model

In this section, the D-TRM for spatial regions is proposed.
Both the topology and the distance between two spatial re-
gions are represented concisely by the D-TRM in a unified
framework. According to the degree of refinement of the dis-
tance, two subtypes of the D-TRM, i.e. the actual D-TRM
(AD-TRM) and the signed D-TRM (SD-TRM), are given to
represent the actual distance and the sign of the distance,
respectively.

The actual distance-based topological relation model

To describe a topological relation model, the properties of a
spatial region, including its interior, boundary and exterior,
should be defined first. The definitions of these properties
are given below.

Definition 1:
A spatial region is defined as a connected interior, a con-

nected exterior and a connected boundary (Egenhofer and
Herring 1991; Egenhofer and Sharma 1993). The interior of
the region is the union of all open sets that are contained in the
region, the boundary of a region comprises a number of lines,
and the exterior of a region is the set that does not contain the
region.

Let A and B represent two spatial regions. The AD-TRM,
which consists of four parts, is represented as

RAD−TRM A;Bð Þ ¼ Min ∂A; ∂Bð Þ Max ∂A; ∂Bð Þ
Min ∂B; ∂Að Þ Max ∂B; ∂Að Þ

� �
ð1Þ

where ∂Aand ∂B are the boundaries of the spatial regions A
and B, respectively. The AD-TRM can also be represented as a
four-tuple, i.e. Min(∂A, ∂B), Max(∂A, ∂B), Min(∂B, ∂A) and
Max(∂B, ∂A). Min(∂A, ∂B) is the minimum distance from ∂A
to ∂B, Max(∂A, ∂B) is the maximum distance from ∂A to ∂B,
Min(∂B, ∂A) is the minimum distance from ∂Bto ∂A and
Max(∂B, ∂A) is the maximum distance from ∂B to ∂A. The
value of the tuple in the AD-TRM can be positive, negative
or zero. The definitions of these positive, negative and zero
distance values are given below.

Definition 2:
Let V and W be separate boundary points for the spatial

regions A and B, respectively. If W is in the exterior of A, the
distance between VandW is positive. IfW is along the bound-
ary of A, the distance between V and W is zero. IfW is within
the interior of A, the distance between V and W is negative.

In Fig. 1, V is a boundary point of the spatial region A, and
W1–W3 are boundary points of the spatial region B.
According to Definition 2, the distance between V and W1 is
positive, the distance between V and W2 is zero, and the dis-
tance between V and W3 is negative. In Fig. 1, +, − and 0 are
positive distance, negative distance and zero, respectively.

To acquire the minimum and maximum distances, the or-
dinal relations of the positive, negative and zero distances are
defined below.

Definition 3:
A positive distance is larger than zero distance, and a zero

distance is larger than a negative distance.
In Fig. 1, according to Definition 3, the distance between V

andW1 is larger than the distance between V andW2, and the
distance between VandW2 is larger than the distance between
V and W3.

In the AD-TRM, the ordinal relation between the minimum
distance and the maximum distance is defined below.

Definition 4:
The minimum distance is no greater than the maximum

distance.
Because the minimum distance and the maximum distance

are the minimum value and the maximum value between the

Fig. 1 Positive, negative and zero distances
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two boundaries, respectively, the maximum distance is no less
than the minimum distance.

Definition 5:
The minimum distance may be equal to the maximum dis-

tance. In this case, both the minimum distance and the maxi-
mum distance are equal to zero.

Because the boundaries of A and B coincide when A is
equal to B, both the minimum distance and the maximum
distance are equal to zero according to Definition 2.

The signed distance-based topological relation model

Compared with the AD-TRM, the SD-TRM uses the sign of
the actual distance instead of the actual distance. The SD-
TRM, which also consists of four parts, is represented as

RSD−TRM A;Bð Þ

¼ SD Min ∂A; ∂Bð Þð Þ SD Max ∂A; ∂Bð Þð Þ
SD Min ∂B; ∂Að Þð Þ SD Max ∂B; ∂Að Þð Þ

� �
ð2Þ

where SD (Min(∂A, ∂B)) is the sign of the minimum dis-
tance from ∂A to ∂B, SD (Max(∂A, ∂B)) is the sign of the
maximum distance from ∂A to ∂B, SD (Min(∂B, ∂A)) is the
sign of the minimum distance from ∂B to ∂A and
SD (Max(∂B, ∂A)) is the maximum distance from ∂B to
∂A. The SD-TRM can also be represented as a four-tuple,
i . e . S D ( M i n ( ∂ A , ∂ B ) ) , S D ( M a x ( ∂ A , ∂ B ) ) ,
SD (Min(∂B, ∂A)) and SD (Max(∂B, ∂A)). The value of
each element in the SD-TRM can be drawn from the set
{− 1, 0, 1}. A value of − 1 means that the distance is neg-
ative, 0 denotes a zero distance and a value of 1 represents
a positive distance. By considering values of {− 1, 0, 1},
81 (81 = 34) topological relations are possible between two
spatial regions. However, not all of the 81 topological re-
lations can be implemented; instead, only parts of the to-
pological relations between two spatial regions can be

implemented. In the following formulas, the value of an
element that can take an arbitrary value is marked with
B*^. Based on Definitions 6 through 7, some impossible
topological relations can be excluded.

Definition 6:
The sign of the minimum distance is no greater than the

sign of the maximum distance.

RSD−TRM A;Bð Þ≠ 1 0
* *

� �
∨ 1 −1

* *

� �
∨ 0 −1

* *

� �
∨

* *

1 0

� �
∨

* *

1 −1

� �
∨

* *

0 −1

� �

ð3Þ

Proof: Because a positive distance is larger than zero, a
zero distance is larger than a negative distance, and the
maximum distance is larger than the minimum distance,
the sign of the minimum distance is no greater than the
sign of the maximum distance.

Definition 7:
It is impossible to set all elements equal to − 1.

RSD−TRM A;Bð Þ≠ −1 −1
−1 −1

� �
ð4Þ

Proof: If both the minimum distance and the maximum
distance from A to B are − 1, then B is entirely located within
the interior of A. Therefore, both the minimum distance and
the maximum distance from A to B are greater than 0.

Results

Topological relations from the AD-TRM and SD-TRM

There are eight topological relations, including disjoint, meet,
overlap, cover, contain, equal, coveredBy and inside, between
two regions embedded within a two-dimensional space that
are characterised by a single connected boundary. Figure 2

Fig. 2 The eight topological
relations based on the AD-TRM
and SD-TRM between two spatial
regions. a Disjoint. b Meet. c
Overlap. d Cover. e Contain. f
Equal. g CoveredBy. h Inside
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shows these eight topological relations based on the AD-TRM
and SD-TRM.

Inference 1: If all four values are greater than 0, then the
two regions are disjoint (Fig. 2a).

If all four values are greater than 0, an arbitrary point on the
boundary of spatial regionA is located in the exterior of spatial
region B, and vice versa. The minimum and maximum dis-
tances from A to B are equal to the minimum and maximum
distances from B to A, respectively. Therefore, Min (∂A, ∂B) =
Min (∂B, ∂A) and Max (∂A, ∂B) = Max (∂B, ∂A) are true for
the disjoint conditions between A and B. Likewise,
S D ( M i n ( ∂ A , ∂ B ) ) = S D ( M i n ( ∂ B , ∂ A ) ) a n d
SD (Max(∂A, ∂B)) = SD (Max(∂B, ∂A)) are true.

Inference 2: If the minimum distance from spatial region A
to B is equal to 0, the maximum distance from A to B is greater
than 0, the minimum distance from B to A is equal to 0 and the
maximum distance from B to A is greater than 0, then the two
regions meet (Fig. 2b).

For the meet relation, the minimum distance from spatial
region A to B is equal to 0, and vice versa. Similar to the
disjoint relation, the minimum and maximum distances from
A toB are equal to the minimum andmaximum distances from
B to A, respectively.

Inference 3: If the minimum distance from spatial region A
to B is less than 0, the maximum distance from A to B is
greater than 0, the minimum distance from B to A is less than
0 and the maximum distance fromB toA is greater than 0, then
the two regions overlap (Fig. 2c).

For the overlap relation, the maximum distance from
spatial region A to B and the maximum distance from B
to A are equal. Taking Fig. 3 as an example, the maximum
distance from A to B is 100, and the maximum distance
from B to A is 100. However, the minimum distance from A
to B and the minimum distance from B to A may be not
equal. For example, Q1 is the boundary point of A and B,
the planar distance between P and Q1 is 70, and the planar
distance between Q1 and Q3 is 50. According to Definition
2, the distance from P to Q1 is 0, and the distance from Q3
to Q1 is 0. To calculate the minimum distance, the value of
σ, which is positive and infinitely close to zero, is defined.

The minimum distance from A to B is −(70 − σ), and the
minimum distance from B to A is −(50 − σ).

Inference 4: If the minimum distance from spatial region A
to B is less than 0, the maximum distance from A to B is equal
to 0, the minimum distance from B to A is equal to 0 and the
maximum distance from B to A is greater than 0, then A covers
B (Fig. 2d).

For the cover relation, the interior of B is entirely within
the interior of A, and A and B share some common bound-
ary. Therefore, the maximum distance from A to B and the
minimum distance from B to A are equal. However, the
absolute value of the minimum distance from A to B may
not be equal to the absolute value of the maximum distance
from B to A.

Inference 5: If the minimum and maximum distances from
spatial region A to B are less than 0, and if the minimum and
maximum distances from B to A are greater than 0, then A
contains B (Fig. 2e).

For the contain relation, B is entirely within the interior
of A. The absolute value of the minimum distance from A
to B is equal to the absolute value of the maximum distance
from B to A; however, their signs are different. Likewise,
the absolute value of the maximum distance from A to B is
equal to the absolute value of the minimum distance from
B to A; however, their signs are also different.

Inference 6: If all four values are equal to 0, then the two
spatial regions are equal (Fig. 2f).

For the equal relation, the boundaries of A and B coin-
cide. Therefore, the distance between any two points is
always zero.

Inference 7: If the minimum distance from spatial region A
to B is equal to 0, the maximum distance from A to B is greater
than 0, the minimum distance from B to A is less than 0, and
the maximum distance from B to A is equal to 0, then A is
coveredBy B (Fig. 2g).

For the coveredBy relation, the interior ofA is entirely within
the interior of B, and A and B share some common boundary.
Therefore, the minimum distance from A to B and the maxi-
mum distance from B to A are equal. However, the absolute
value of the maximum distance fromA to Bmay not be equal to
the absolute value of the minimum distance from B to A.

Inference 8: If the minimum and maximum distances from
spatial region A to B are greater than 0, and if the minimum
and maximum distances from B to A are less than 0, then A is
inside B (Fig. 2h).

For the inside relation, spatial region A is entirely within
the interior of spatial region B. The absolute value of the
minimum distance from A to B is equal to the absolute
value of the maximum distance from B to A; however, their
signs are different. Likewise, the absolute value of the
maximum distance from A to B is equal to the absolute
value of the minimum distance from B to A; however, their
signs are also different.

Fig. 3 Overlap relation and the minimum and maximum distances
between spatial region A and B
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Mutual exclusiveness of topological relations

The eight topological relations are mutually exclusive, that
is, only one topological relation in the SD-TRM holds true
for any two spatial regions in a given situation. Even with
the same topological relations between two pairs of re-
gions, the representation of their topological relations
based on the AD-TRM may be different. Since the AD-
TRM is a refinement of the SD-TRM, the value of the
SD-TRM can be derived from the value of the AD-TRM
and the mutual exclusiveness of topological relations de-
fined by the SD-TRM can be proven. To prove the mutual
exclusiveness of these topological relations, the topologi-
cal relation decision tree, which is a tree-structured classi-
fication model, is introduced (Fig. 4).

In the topological relation decision tree, each internal node
(black circles in Fig. 4) represents a test of an attribute, each
branch represents the outcome of that test, and each leaf node
(white circles in Fig. 4) represents a specific topological rela-
tion. The paths from the root to the leaf nodes represent clas-
sification rules. Because the value of each attribute can be − 1,
0 or 1, each internal node has three branches. If the attribute is
− 1, the leftmost branch is followed. If the attribute is 0, the
middle branch is followed. If the attribute is 1, the rightmost
branch is followed. This process is repeated until the leaf node
is reached. If the branch is a solid line, the value of the attri-
bute is possible; otherwise, the value of the attribute is impos-
sible (dotted lines in Fig. 4). There are three dotted lines in
Fig. 4. Since the topological relation decision tree in Fig. 4 has
only burst nodes but no sink nodes, the topological relation
decision tree can prove the mutual exclusiveness of topolog-
ical relations.

Take the leftmost dotted line (labelled as ① in Fig. 4) for
example. Because the sign of the minimum distance is no
greater than the sign of the maximum distance according to
Definition 6, if the SD(Min(∂A, ∂B)) = 0, then it is impossible
for SD(Max(∂A, ∂B)) = − 1.

For the middle dotted line (labelled as ② in Fig. 4), if
SD(Min(∂A, ∂B)) = 0 and SD(Max(∂A, ∂B)) = 1, then it is im-
possible for SD(Min(∂B, ∂A)) = 1 (Formula (7)).

RAD−TRM A;Bð Þ≠ 0 1
1 *

� �
ð7Þ

Proof: If SD (Min(∂A, ∂B)) = 0 and SD (Max(∂A, ∂B)) = 1,
part of B’s boundary coincide with part of A’s boundary, and
other part of B’s boundary must be in the exterior of A. Only
the coveredBy and meet relations meet these conditions. The
value of SD (Min(∂B, ∂A)) is − 1 for the coveredBy relation
and that of SD (Min(∂B, ∂A)) is 0 for the meet relation, and it
is impossible for SD (Min(∂B, ∂A)) = 1.

For the rightmost dotted line (labelled as ③ in Fig. 4), if
SD (Min(∂A, ∂B)) = 1 is true, then it is impossible for
SD (Min(∂B, ∂A)) = 0 (Formula (8)).

RAD−TRM A;Bð Þ≠ 1 *

0 *

� �
ð8Þ

Proof: If SD (Min(∂A, ∂B)) = 1 is true, then spatial region A
does not contain any boundary point of spatial region B, and
only the disjoint and inside relations meet these conditions.
The value of SD (Min(∂B, ∂A)) is − 1 for the inside relation
and that of SD (Min(∂B, ∂A)) is 1 for the disjoint relation, and
it is impossible for SD (Min(∂B, ∂A)) = 0.

Discussion

Topological relation representations using the 9IM,
splitting measures of the 9IM, SD-TRM and AD-TRM

Many topological relation models have been proposed. Thus,
it would be of interest to compare the proposed model with
other models. The 9IM, which is a widely used topological
relation representation model, is defined by Formula (9)
(Egenhofer and Herring 1991). Nine splitting measures that
offer refinement opportunities for the 9IM are defined as ratios
(Formula (10)) (Egenhofer and Dube 2009). In Formulas (9–
10), Ao, ∂A, A−, Bo, ∂B and B− are A’s interior, A’s boundary,
A’s exterior, B’s interior, B’s boundary and B’s exterior, respec-
tively. In Formula (10), the functions of area(), length() and

Fig. 4 The topological relation
decision tree
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bounded(), are to compute the area, compute the length and
compute the area of a spatial object’s exterior shut off by the
union of the two spatial objects. Among these splitting mea-
sures, either the area of an intersection with respect to spatial
region A or the length of an intersection with respect to the
length of the boundary of A is used for the refinement of the
empty or non-empty splitting measures of the 9IM (SP-9IM).

R9IM A;Bð Þ ¼
Ao∩Bo Ao∩∂B Ao∩B−

∂A∩Bo ∂A∩∂B ∂A∩B−

A−∩Bo A−∩∂B A−∩B−

2
4

3
5 ð9Þ

RSP−9IM A;Bð Þ ¼

area Ao∩Boð Þ
area Að Þ

length Ao∩∂Bð Þ
length ∂Að Þ

area Ao∩B−ð Þ
area Að Þ

length ∂A∩Boð Þ
length ∂Að Þ

length ∂A∩∂Bð Þ
length ∂Að Þ

length ∂A∩B−ð Þ
length ∂Að Þ

area A−∩Boð Þ
area Að Þ

length A−∩∂Bð Þ
length ∂Að Þ

area bounded A−∩B−ð Þð Þ
area Að Þ

2
6666664

3
7777775

ð10Þ

Some instances are given in Fig. 5. Table 1 lists the results
of comparisons between the 9IM, SP-9IM, SD-TRM and AD-
TRM. ∞ is infinity in Table 1. Because the intersection of A’s
exterior and B’s always is infinity in Fig. 5a–d.

The formalisms of the 9IM for Fig. 5a, b and for Fig. 5c, d
are the same because it considers only empty and non-empty
values, and the 9IM concisely represents topological relations.
Although there are obvious distance differences in this figure,
their formalisms of the 9IM are identical.

Likewise, the formalisms of the SP-9IM for Fig. 5a, b and
for Fig. 5c, d are the same. This is due to the same shapes of A
and B in Fig. 5a, b, the same topological relations in Fig. 5a, b,
the same shapes of A and B in Fig. 5c, d, the same topological
relations in Fig. 5c, d, and the same formalisms of the SP-9IM
for Fig. 5a, b and for Fig. 5c, d. Although the SP-9IM, which is
the refinement of the 9IM, can distinguish among nine splitting
measures, it does not have the ability to represent the distance.

Similarly, the formalisms of the SD-TRM for Fig. 5a, b and
for Fig. 5c, d are the same because it considers only the sign of
the distance, and the SD-TRM concisely represents topological
relations. Although there are obvious differences between the
topological relations using the SD-TRM in this figure, their
formalisms are identical. Both the SD-TRM and 9IM can con-
cisely represent topological relations between spatial regions.

However, the formalisms of the AD-9IM for Fig. 5a, b and
for Fig. 5c, d are different. This is because the AD-TRM con-
siders the minimum and maximum distances between spatial
regions and provides more details than the 9IM and SD-TRM.

The focuses of the AD-TRM and SP-9IM are different. The
advantage of the AD-TRM is the emphasis on the distance,
whereas the advantage of the SP-9IM is the emphasis on the
splitting measures. The AD-TRM is the refinement of the SD-
TRM, and the SD-TRM is the generalisation of the AD-TRM.

The interoperability of the AD-TRM, SD-TRM, 9IM
and SP-9IM

The AD-STM, SD-TRM, 9IM and SP-9IM can effectively
represent the eight topological relations between spatial re-
gions. Interoperability implies an exchange between the dif-
ferent topological relation models. The transformation of the
above mentioned four models are discussed in this section.

First, the interoperability of the AD-TRM and SD-TRM is
investigated. Because the AD-TRM is a refinement of the SD-
TRM, the value of the SD-TRM can be easily derived from
the value of the AD-TRM. However, because the SD-TRM is
the generalisation of the AD-TRM, it is impossible to infer the
AD-TRM from the SD-TRM. If a_dis is the actual distance in
the AD-TRM and s_dis is the signed distance in the SD-TRM,
the interoperability of the AD-TRM with the SD_TRM is
given by Formula (11). In Formula (11), a_dis can be any real
number, whereas s_dis can only be −1, 0 or 1. As concluded
from Formula (11), there is always a corresponding value of
the SD_TRM for the value of the AD_TRM.

s dis ¼
1 if a dis > 0ð Þ
0 if a dis ¼ 0ð Þ
−1 if a dis < 0ð Þ

8<
: ð11Þ

Second, the interoperability of the SD-TRM and 9IM is
explored. The SD-TRM and 9IM are equivalent in their
representations of the topological relations between re-
gions. Although the 9IM, which is an intersection model,
and the SD-TRM, which is a distance-based model, are two
completely different models, both models have the same
level of detail. If all the nine values of the 9IM are com-
puted, then the topological relation of spatial objects can be
concluded. Likewise, if all the sign of the four values of the
SD-TRM are computed, then the topological relation of
spatial objects can be concluded. Table 2 lists all of the
eight topological relations between spatial regions repre-
sented by the SD-TRM and 9IM. Each topological relation
represented by the SD-TRM corresponds to a unique topo-
logical relation represented by the 9IM (Table 2).

Fig. 5 Examples of the
topological relations between two
spatial regions. a, b Disjoint
relations between spatial region A
and B. c, d Contain relations
between spatial region A and B
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From Table 2, it can be concluded that the SD-TRM and
9IM are equivalent in their representations of the eight topo-
logical relations. Due to this equivalence, the representations
of the topological relations using the SD-TRM and 9IM can
be directly converted to each other according to Table 2.

Third, the interoperability of the AD-TRM and 9IM is ex-
plored. As described above, the SD-TRM and 9IM are equiv-
alent in their representations of the topological relations be-
tween spatial regions. The interoperability of the AD-TRM
with the 9IM can be summarised in two steps: (1) The trans-
formation from the AD-TRM to the SD-TRM can be
expressed according to Formulas (11) and (2) the transforma-
tion from the SD-TRM to the 9IM is in accordance with
Table 2. The relations in the AD-TRM can be converted into
the 9IM after following these two steps. Because the SD-TRM
and 9IM consider the sign of the distance and the content of
the intersection, respectively, both models represent the topo-
logical relations with the same level of detail. Therefore, it is
impossible to infer the AD-TRM from the 9IM.

Fourth, the interoperability of the SP-9IM with the AD-
TRM, the SD-TRM and the 9IM is explored. Because the
SP-9IM is a refinement of the 9IM, the value of the 9IM can
be easily derived from the value of the SP-9IM. However,
since the 9IM is the generalisation of the SP-9IM, and since
the 9IM and the SD-TRM are equivalent, it is impossible to
infer the SP-9IM from the 9IM or the SD-TRM. Due to the
different emphases of the SP-9IM and AD-TRM on different
aspects of metric properties, it is impossible to infer one model
from the other.

The comparison of the topological relation
representation between the AD-TRM
and the comprehensive set of 11 metric refinements

A comprehensive set of 11 metric refinements were de-
fined for the representation of the topological relations

(Egenhofer and Dube 2009). In addition to the nine split-
ting measures, Egenhofer and Dube (2009) also defined
two closeness measures. These two closeness measures
are expansion closeness (EC) and contraction closeness
(CC). For the EC, the buffer is normalised by the area after
swelling (Formula (12)), while for the CC, the area of the
reference region normalises this buffer zone to a value
between 0 and 1 (Formula (13)). ΔA is the buffer from
the boundary of A to the boundary of B in the Formulas
(12–13). Both EC and CC convert an empty boundary-
boundary intersection into a non-empty intersection.

EC ¼ area Δ Að Þð Þ
area Að Þ þ area Δ Að Þð Þ ð12Þ

CC ¼ area Δ Að Þð Þ
area Að Þ ð13Þ

Although the distance can be expressed by EC and CC in
some degree, there are some differences between EC/CC and
AD-TRM in the expression of distance.

1. For meet relation, EC is zero, while the minimum and
maximum distances from A to B and the minimum and
maximum distances from B to A are not equal to zero in
AD-TRM. For meet relation, the above mentioned dis-
tance can be expressed in AD-TRM.

2. For overlap relation, both EC and CC are zero, while all
four values are not equal to zero in AD-TRM. For overlap
relation, the above-mentioned distance can be expressed
in AD-TRM.

3. For cover relation, both EC and CC are zero, while the
minimum distance fromA toB and the maximum distance
from B to A are not equal to zero in AD-TRM. For cover
relation, the above-mentioned distance can be expressed
in AD-TRM.

Table 1 Topological relation description by the 9IM, SP-9IM, SD-TRM and AD-TRM

9IM SP-9IM SD-TRM AD-TRM

Fig. 5a 0 0 1
0 0 1
1 1 1

2
4

3
5 0 0 1

0 0 1
0:9 0:9 ∞

2
4

3
5 1 1

1 1

� �
5 16
5 16

� �
Fig. 5b

0 0 1
0 0 1
1 1 1

2
4

3
5 0 0 1

0 0 1
0:9 0:9 ∞

2
4

3
5

1 1
1 1

� �
10 23
10 23

� �

Fig. 5c

1 1 1
0 0 1
0 0 1

2
4

3
5 0:2 0:4 0:8

0 0 1
0 0 ∞

2
4

3
5

−1 −1
1 1

� �
−14 −1
1 14

� �

Fig. 5d

1 1 1
0 0 1
0 0 1

2
4

3
5 0:2 0:4 0:8

0 0 1
0 0 ∞

2
4

3
5

−1 −1
1 1

� �
−11 −2
2 11

� �
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4. For coveredBy relation, both EC and CC are zero, while
the maximum distance from A to B and the minimum
distance from B to A are not equal to zero in AD-TRM.
For coveredBy relation, the above-mentioned distance
can be expressed in AD-TRM.

5. For inside relation, EC is greater than zero and less than 1,
while all four values are not equal to zero in AD-TRM.
The ratio and the distance are expressed in EC and AD-
TRM, respectively. The ratio and the distance are different
metric properties.

6. For contain relation, CC is greater than zero and less than
1, while all four values are not equal to zero in AD-TRM.
The ratio and the distance are expressed in CC and AD-
TRM, respectively. The ratio and the distance are different
metric properties.

Even all the splitting measures and closeness measures are
accounted for, there are many differences between the D-TRM
and the comprehensive set of 11 metric refinements. The D-
TRM can express more distance information than the compre-
hensive set of 11 metric refinements, whereas, the comprehen-
sive set of 11 metric refinements can express more ratio infor-
mation than the D-TRM.

Conclusions

The major novel contribution of this paper is its proposal of
the D-TRM, which considers the topology and distance be-
tween two spatial regions within a unified framework. The
AD-TRM, which focuses on the actual distance, and the SD-
TRM, which concentrates on the sign of the distance, are two
different subtypes of D-TRM. Eight topological relations,
namely, disjoint, meet, overlap, cover, contain, equal,
coveredBy, and inside, are effectively represented by the
AD-TRM and the SD-TRM. A topological relation decision
tree is introduced to prove the mutual exclusiveness among
the eight topological relations represented by the SD-TRM.
The results of a comparison between the 9IM, SP-9IM, AD-
TRM and SD-TRM show the following: (1) the AD-TRM
provides a greater level of detail than the 9IM; (2) the AD-
TRM is the refinement of the SD-TRM, and the SD-TRM is
the generalisation of the AD-TRM and (3) the SP-9IM and
AD-TRM emphasise different aspects of metric properties.
The result of a comparison of the topological relation repre-
sentation between the AD-TRM and the comprehensive set of
11 metric refinements shows that the D-TRM can express
more distance information than the comprehensive set of 11
metric refinements.

Although both the topology and distance are considered in
the proposed model, this paper is primarily limited insomuch
that only two-dimensional spatial regions are discussed and
three-dimensional spatial objects are not included. WhenTa
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applied to the surface of a sphere, the equal and attach rela-
tions, the contain and embrace relations and the cover and
entwined relations, cannot be distinguished by the D-TRM
at present. Spatial objects embedded in a three-dimensional
space and the surface of a sphere by the extended D-TRMwill
be discussed in a future investigation. In addition, this study
addresses only spatial regions without holes, while other ob-
jects, such as point, line, spatial region with holes, multi-point,
multi-line and multi-region objects, are not discussed. An ex-
tended D-TRM that can be used to describe the topological
relations between these other objects will be the subject of
future research. As the AD-TRM is used to describe the min-
imum and maximum distances between two regions, the com-
position of the topological relations based on the AD-TRM
may be different from that based on the 9IM. Thus, the com-
position of the topological relations based on the AD-TRM
will be studied in the future as well. The 9IM and other ex-
tended models based on these models have been widely used
as bases for the standards of queries in spatial databases and
for spatial reasoning, whereas the D-TRM requires extensive
verification to prove its applicability in these areas.
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